

STAR Spin Program

OUTLINE

- Goals and priorities
- Accomplishments
- Status
- Plans, Prospects and Issues

L.C. Bland, for the STAR Collaboration Brookhaven National Laboratory RHIC Program Review, 30 June 2004

~ 400 collaborators 34 institutions 8 countries

Strong <u>new</u>
STAR spin
interest from:
CalTech, LBNL,
MIT, Valparaiso
U., Zagreb

Brazil: Sao Paolo China: IHEP - Beijing, IPP - Wuhan

England: Birmingham France: IReS - Strasbourg, SUBATECH-Nantes

Germany: Frankfurt, MPI - Munich Poland: Warsaw University of Technology

Russia: MEPHI - Moscow, JINR - Dubna, IHEP - Protvino

U.S.: Argonne, Berkeley, Brookhaven National Laboratories

UC Berkeley, UC Davis, UCLA, Creighton, Carnegie-Mellon, Indiana, Kent State, MSU, CCNY, Ohio State, Penn State, Purdue, Rice, Texas, Texas A&M, Washington, Wayne, Yale Univ.

Goals and Priorities

• Determine gluon contribution to the proton's spin...

$$\frac{1}{2} = \langle S_q \rangle + \langle S_G \rangle + \langle L_q \rangle + \langle L_G \rangle \Big|_{Q^2}$$

$$\langle S_q \rangle \approx 0.1, \text{ from polarized DIS}$$

$$\langle S_G \rangle = \int_0^1 \Delta G(x, Q^2) dx$$

- GS A,B,C are models of gluon polarization consistent with polarized deep inelastic scattering data.
- T. Gehrmann and W.J. Stirling, Phys. Rev. D**53** (1996) 6100.

- Determine flavor separation of quark polarization
- Establish transverse spin structure of the nucleon

Gluon Contribution to the proton's spin

qg Compton scattering with polarized protons provides a direct measure of gluon polarization.

Quark-Gluon Compton scattering

$$\overrightarrow{p} + \overrightarrow{p} \to \gamma (+ jet) + X$$

Coincident detection of γ and away-side jet \Rightarrow event determination of initial-state partonic kinematics.

Measure spin-correlation parameter (A_{LL}) with longitudinally polarized protons

$$P_{b1}P_{b2}A_{LL} = \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+}}$$

 $P_{b1(2)}$ — beam pol'n (~70%)

 $N_{++(+-)}$ — equal (opposite) helicity yield

R — relative luminosity

Quark Polarizations Accessed from W[±] Production

- W[±] production in pp collisions forms the best means to probe the flavor structure of QCD sea
- Parity violating single-spin asymmetries at RHIC provide access to the quark flavor structure of the proton spin:

 Charge sign discrimination of highly energetic forward electrons/positrons is necessary to gain direct sensitivity to the quark and anti-quark polarizations by flavor:

Accomplishments

leavy-Ion Physics to spin program)

STAR p+p, \sqrt{s} = 200 GeV

Hadronic high- p_T azimuthal correlations in pp collisions

Phys. Rev. Lett. 90 (2003) 082302

Run 2: pp reference data for STAR heavy-ion program

- di-hadrons serve as good di-jet surrogates for heavy-ion collisions.
- clear near-side and away-side di-hadron correlations in *pp* collisions serve as contrast for central AuAu collisions where away-side correlations are strongly suppressed.

Forward π^0 Production

STAR collaboration, PRL **92**, 171801 (2004)

$$A_{N} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = \frac{1}{P_{beam}} \frac{N_{\uparrow}/L_{\uparrow} - N_{\downarrow}/L_{\downarrow}}{N_{\uparrow}/L_{\uparrow} + N_{\downarrow}/L_{\downarrow}}$$

- $N_{\uparrow(\downarrow)}$ is spin up (down) π^0 yield
- $L_{\uparrow(\downarrow)}$ is spin up (down) integrated luminosity

- pQCD calculations consistent with measured large- $\eta \pi^0$ cross sections
- Large transverse single-spin effects observed for $\sqrt{s} = 200$ GeV pp collisions

Collins effect \Rightarrow transversity Sivers effect \Rightarrow orbital angular momentum

Additional measurements required to disentangle contributions

Beam Beam Counters -Transverse Single Spin Asymmetries

Single spin asymmetries in $p+p \rightarrow A + X$, A- hit(s) from charged particles in the BBC

 $N_{L(R)}$ – number of counts in the BBC East or BBC West (small annuli) counted every bunch crossing by the scaler system

BBC small hexagonal annulus:

BBC West

- inner (outer) diameter 9.6cm (48cm); - of 18 pixels (16 PMT) covering $3.3 < |\eta| < 5.0$ and $0 < \phi < 2\pi$ (two η bins and azimuthal segmentation)

Transverse Single Spin Asymmetries BBC Run-3 (Preliminary) Results

- Strong pseudorapidity dependence of A_N for $x_E > 0$ ($A_N = 0$ for $x_E < 0$)
- BBC fast local polarimeter at STAR

Beam Beam Counters

local polarimeter at STAR

Longitudinal polarization confirmed for the first time at STAR IR in Run-3

Disentangling Contributions to A_N

Proposed STAR measurement for run 5

Sivers function:

• requires spin-correlated transverse momentum (\mathbf{k}_{\perp}) in distribution function for proton with momentum \mathbf{P} :

$$\Delta^{N} f(x, \boldsymbol{k}_{\perp}, \boldsymbol{S}_{\perp}) \frac{\boldsymbol{S}_{\perp} \cdot (\boldsymbol{P} \times \boldsymbol{k}_{\perp})}{|\boldsymbol{S}_{\perp}||\boldsymbol{P}||\boldsymbol{k}_{\perp}|}$$

- related to parton orbital angular momentum (with possible connection to generalized parton distributions).
- gluon Sivers function accessible through spin-correlated mid-rapidity dijet azimuthal correlations.

Daniel Boer and Werner Vogelsang, Phys.Rev. D **69** (2004) 094025

Jet Sensitivity to Gluon Polarization

GRSV models of gluon helicity asymmetry distribution, $\Delta G(x)$, from M. Gluck, E. Reya, M. Stratmann and W. Vogelsang, Phys. Rev. D63 (2001) 094005

Inclusive jet production provides good sensitivity to $\Delta G(x)$.

Kinematic Range

- Large Asymmetry
- Sensitivity to Large ΔG
- Dominant ReactionMechanism

- Polarized proton collisions
- $\sqrt{s} = 200 \text{ GeV}$
- Jet E_T 5-50 GeV
- Pseudorapidity $0 < \eta < 1$

Jet Finder: Charged Jets

For this analysis, Jets are defined as a grouping of one or more (charged) tracks measured in the TPC and satisfying the following requirements...

- Using an Iterative, Midpoint, Cone Algorithm*
- Cone Angle = 0.7 in $\eta \phi$
- Seed Energy = 0.5 GeV
- pT Track > 0.1 GeV/c
- $-1.6 < \eta_{tracks} < +1.6$
- pT Jet > 5 GeV

^{*} Blazey et al hep-ex/0005012 (SNOMASS)

Trigger Bias: Neutral Energy Fraction

Track and Cluster Multiplicities

Jets are found in the data

Quantitative understanding of trigger bias (EMC trigger) and jet energy scale is still required.

Relative Luminosity Determination

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}} \qquad R = \frac{L_{++}}{L_{+-}}$$

- $N_{++(+-)}$ is equal (opposite) helicity yield
- $L_{++(+-)}$ is integrated luminosity for equal (opposite) helicity collisions

Error on $A_{T,T}$ from Relative Luminosity Meas. ~ 10^{-3}

Diagnostic Tools: Parity-Violating Single Longitudinal Spin Asymmetries

$$\mu = 0.00066$$
 $\sigma = 0.0156$
 $\chi^2/dof = 1.12$

$$\mu = 0.0215$$
 $\sigma = 0.0163$
 $\chi^2/\text{dof} = 1.06$

Run Number

Parity-violating single longitudinal spin asymmetries consistent with 0.

Status

Barrel EMC

EMC Module

- Sampling Pb-Scintillator
- $-1.0 < \eta < 1.0$
- Full azimuthal coverage
- 120 modules
 - $(\Delta \eta, \Delta \phi)_{\text{module}} \sim (1.0, 0.1)$
 - 40 towers/module
 - Depth = $21 X_0$
 - $(\Delta \eta, \Delta \phi)_{tower} \sim (0.05, 0.05)$
 - dE/E ~ 16%/√E
- Shower Max Detector (SMD)
 - Positioned at ~ 5 X₀
 - High spatial resolution
 - (Δη, Δφ) ~(0.007, 0.007)

- 60 modules (half barrel) used for data taking in runs 3,4.
- 112/120 modules installed by 10/04.
- complete barrel EMC ready for data taking by 10/05.

EEMC Installation

Installed for 2004 run:

- > All active elements: 720 towers, ~7000 SMD strips, 1440 preshower tiles, 720 postshower tiles, ~30000 optical readout fibers
- > Full tower readout and STAR L0 trigger inputs
- > MAPMT readout for 1/3 of the SMD + preshower + postshower channels

> Extensive laser and LED diagnostic systems; full HV control system

EEMC Incorporates Innovative Shower-Maximum Detector

- > Modular, but gapless, design utilizes fast plastic scintillating strips of triangular cross section to measure transverse shower profiles.
- \triangleright Critical for γ/π^0 and electron/hadron discrim.

- > Signals from each of ~7000 strips integrated and 12-bit digitized every Xing in novel, compact, fast electronics.
- ➤ Same multi-anode PMTbased FEE used for pre/postshower readout (~2K channels) funded through MIT and STAR.

Progress Toward EEMC-Based Physics Analysis

- > EEMC alone permits MIP and π^0 reconstruction (below) for gain calibration and physics
- > TPC tracking to EEMC permits electron ID and enhances MIP ID

SMD-aided π^0 Reconstruction **Progress**

- > Focus for now on isolated tower clusters > 4 GeV in 200 GeV p+p run 4 data
- > Look for events with 2 clear SMD peaks in at least one plane, within leading tower acceptance
- > Fit 'calibrated' 2-gaussian peaks to SMD profiles, to extract opening angle and energy sharing
- Combine tower
- + SMD info to extract π^0 mass, etc.

EEMC will be fully ready for physics production in 2005!

- > All EEMC towers + trigger and 1/3rd of SMD and pre/post-shower systems participated fully in 2004 run and worked well.
- > Installation during present shutdown focusing on remaining 32 MAPMT boxes to complete SMD/pre/post readout (all component deliveries on schedule).
- > Considerable analysis work for calibrations of all subsystems is ongoing and looks very encouraging.
- > EEMC-based physics analyses of 2004 STAR data will focus on:
- π⁰-gated di-hadron correlations in 62 and 200 GeV Au+Au (quenching of q vs. g jets)
- $A_{LL}(\pi^0)$ in 200 GeV p+p (sensitivity to ΔG in proton)
- Evaluation of efficiency & bias for different jet triggers, + extended coverage for A_{LL}(jets) in 200 GeV p+p
- Search for high-p_T direct
 photon yield in p+p and Au+Au

Integrated tracking approach - STAR tracking upgrade

- Simulated forward p_T resolution (1 < η < 2)
 - Forward p_{τ} reconstruction: π^{-}
 - True $p_T = 30 \text{ GeV}$
 - Range in η : 1 < η < 2

- Simulated fast tracking configuration:
 - Inner (fast) configuration: 3 silicon layers
 - Outer (fast) configuration: 2 triple GEM layers

Reconstructed p_T for various detector configurations:

Integrated tracking approach of pixel upgrade and inner silicon upgrade in combination with forward GEM tracker mandatory!

Overview and timeline - STAR tracking upgrade

Integrated Tracking upgrade

- The study of heavy flavors and W production will require an upgrade of the STAR inner/forward tracking system
 - Integrated tracking design of a new inner and forward STAR tracking system is mandatory
 - Staging of tracking upgrade in accordance with readiness of detector technology and beam development
- STAR tracking upgrade program actively pursued by several STAR institutions
- STAR tracking upgrade working group (Convenor: Ernst Sichtermann (LBL) and Bernd Surrow (MIT))
 - W physics case (Flavor structure of quark helicities)
 - Heavy flavor spin case under investigation (Strong dependence of partonic asymmetry on heavy quark mass- study of heavy flavor tagged jets): STAR Heavy flavor program driven by STAR's relativistic heavy-ion program
 - Simulation work and integrated design of detector layout based on pixel, silicon and triple-GEM technology (R&D work has been started) has been started
- Possible scenario:
 - Stage 1: Installation of pixel detector together with a minimal new barrel tracking detector based on silicon technology (-1 < η < 1) (Heavy Flavor Physics)
 - Goal: Proposal by summer 2005
 - Installation of new inner tracking system in time for next long Au-Au run
 - Stage 2: Upgrade of the forward (inner silicon and outer GEM) tracking system (1 $\langle \eta \rangle$ (W physics)
 - Goal: Proposal by summer 2006
 - Installation of forward system in time for 500GeV production run
- Dedicated time for machine development with polarized protons to achieve high luminosity and high polarization is vital for the success of this novel program!

in STAR decadal plan and AGS/RHIC PAC

GEM development - STAR tracking upgrade

Triple-GEM tracking detector development

- Design of at least three triple-GEM chambers to be installed and tested at STAR under beam conditions:
 - Industrial production of GEM foils: Tech Etch Inc., Plymouth, MA
 - Develop and manufacture GEM foils for applications in triple-GEM detectors and other applications such as GEM TPC readout schemes (First gain tests are encouraging!)
 - Manufacture of 1D/2D-readout structures
 - Design of a flexible GEM chamber to install and replace GEM foils
 - Design of a chip readout system based on APV25-S1 (Used for CMS silicon tracker and COMPASS triple-GEMs)

RHIC R&D team:

- Collaboration between STAR/PHENIX: ANL, BNL, MIT, Yale
- Tech Etch Inc. agreed to formulate a SBIR proposal by January 2005 in collaboration with ANL, BNL, MIT and Yale

R&D and construction laboratory:

- In order to realize the design and construction of a GEM-type tracking detector for the RHIC collider experiments, a clean-room to handle, inspect and test GEM-foils besides the actual detector assembly is urgently needed
 - Strong interest by several MIT faculty and staff members to establish such a test and construction laboratory at MIT-LNS and MIT-Bates using two existing clean room setups used for the BLAST drift chamber construction
 - Profit from clean room experience at MIT Microsystems Technology Laboratory (Several clean room accessories are available for free from the MIT Microsystems Technology Laboratory based on industry donations)
- Other potential location: Yale

Forward Meson Spectrometer

Conceptual Design

Physics Motivation:

- probing gluon saturation in p(d)+A collisions via...
 - > large rapidity particle production $(\pi^0, \eta, \omega, \eta', \gamma, K^0, D^0)$ detected through all γ decays.
 - ➤ di-jets with large rapidity interval (Mueller-Navelet jets)
- disentangling dynamical origins of large x_F analyzing power in p_{\uparrow} +p collisions.

Issues

- Adequate time to operate RHIC with polarized protons to attain polarization and luminosity goals required for STAR spin program.
- Increase robustness of barrel EMC readout electronics
 - ⇒ eliminate front-end electronics power supply problems and reduce data corruption
- Complete development of analysis tools for jet, photon and electron finders.
- Complete forward tracker upgrade to allow charge-sign discrimination for W physics program.

Backup Slides

Scenarios for Evolution of STAR Spin Program

Fiscal Year	27 weeks/year BUP (submitted 8/03)		"Optimized Constant Effort" Scenario		32 weeks each year run scenario	
2004	5+14 Au+ Au 200	5+0 pp 200	5+14 Au+ Au 200	5+0 pp 200	5+14 Au+ Au 200	5+0 pp 200
2005	5+9 Au+ Au Escan	5+5 pp 200	6+11 Au+ Au		6+8 Au+ Au Escan	5+10 pp 200
2006	5+9 d+Au	5+5 pp 200	Escan	5+12 pp 200	5+8 d+Au	5+11 pp 200
2000	200	0.0 pp 200	5+9 d+Au 200	5+13 pp 200	200	0 · 11 pp 200
2007	5+5 Au+ Au 200	5+9 pp 200			5+10 Au+ Au 200	5+9 Cu+ Cu 200
			5+15 Au+ Au 200	5+8 Cu+ Cu 200		
2008	5+10 Au+ Au 200	5+5 pp 500			5+10 Au+ Au 200	5+9 pp 200
∫⊥ _{max} dt pp 200	76 pb ⁻¹		88 pb ⁻¹		156 pb ⁻¹	
∫⊥ _{max} dt post-TOF Au+Au	1.4 nb ⁻¹		1.6 nb ⁻¹		2.1 nb ⁻¹	
What's missing?	Any Cu+Cu 200; 2 nd +3 rd long pp		3 rd long pp; 2 pp devel. chances		1 pp devel. chance	